
Central potential problem and angular momentum

What is a central potential? 

Separating the Angular and Radial wave equations

Asymptotics of the radial equation 

Example 1: Free Particle

Example 2: 3-d QHO

Next chapter is also a central potential problem...the Hydrogen atom.  



Central field problem and angular momentum

As usual, we wish to solve Schroedinger's equation, 

But limit ourselves to cases in which the 

This means that we can look for solutions which simultaneously diagonalize not 
just  

but and as well. 

Note also that it will be most convenient to talk almost entirely in terms of 
spherical coordinates, for example, 



Note also that one simple way to arrange for 

Is for the potential, V, to depend on the radial co-ordinate only; 

Now, since and depend only on the angular co-ordinates

and since the wave functionals can be taken to diagonalize these operators, it
must be that  

And plugging this into the Schroedinger equation for a particle of mass 

We have....



=E

Where we have dropped the 'm' from 

since the resulting equation is independent of m. This means that there
is always (atleast) a 2l+1 degeneracy (same energies, different states) 
in the energy eigenvectors in all these central field problems. From our 
discussion of the spherical harmonics in the preceeding we see that this 
degeneracy is a direct result of the spatial isotropy of the problem... the 
quantization axis 'z' can point in any direction.  

And note also  that for a two-body problem, our        is really the reduced
mass, 

We now proceed to discuss the asymptotics and solutions of this radial 
schroedinger equation. 



It is useful to  define a function U via; 

Before we go onto to solve the radial Schroedinger equation in U, etc. we 
note what has transpired with the norm; it started as

Finally, in terms of U,  

Now note what has happened in this variable change to the Schroed eqn;  in U
the radial schroedinger equation has become a 1-d problem with the usual norm
BUT on the domain, 0 to  

i,j are some multiindex. Specializing to spherical coordinates we can write this 
as

Where '(spherical)'  are the angular integrals (also just products of delta 
functions in angular quantum numbers, but we focus here on the radial part). 



Ex: take V=0. Then, the Schroedinger equation reads, 

=E

With V=0 can be cast as 

And with the variable change 

This becomes, 

We now investigate the asymptotics of this solution, just the free particle in 
3-d in spherical co-ordinates.

Some Asymptotics

with



At We can ignore the l-terms, so find wave-like solutions for U 

So, 

These are inward traveling spherical waves. Here  

r ~ 

then in analogy with the 1-d case of bound state, thereIf the  

are exponentially decreasing and increasing solutions. We are only interested
in the decreasing exponential case, 

So must take B/A = 0. Note that here 



At

 
non-sing sing

 

 

The l-terms we ignored at large r 
start to dominate and searching for power law solutions, 

We find, 

So that 

Not just any large r solution will 
limit to a non-singular solution at
r=0....this leads to discrete E, 
i.,e. A Quantization Condition.  



As an example, note that for a coulomb potential, 

We find, at large r, a joint power-exponential solution,  

With

We will see that the Hydrogen WF is of this form....more later. 



These asymptotics described above hold as long as 

As r ~

Hermiticity also requires that

Note for example that V ~ Is too singular...this case will arise later...

A deeper look at the asymptotics

Thus the reason the Coulomb case was a joint power-exponential can be traced
to the fact that it is a boundary case of this limit  

For bound states at large r this expression must vanish for all 

by normalizability. Thus, this is essentailly a condition at  

Physically, we can think of computing the particle number current in a 
mixed state of and It is proportional to the above expresion.

Thus, hermiticity in this case is essentially the same as requiring that solutions 
do not correspond to creating or annihilating particles at 



We can compare this formulation of QM with the known solution for a free particle,   

Infeld: has a nice way of realizing these solutions in terms of spherical 
co-ordinates. First note that we are solving 

With 

The Free Particle in Spherical co-ordinates

Write this as



Note the identity, 

So that 

indicating...

Thus a solution at l=0 can be used to create a solution at all l . To do so note 

that the U for the l=0 solution is (here written in terms of R) has two solns

Two solutions since still solving the full l=0 D.E...not like the QHO case where it
was a 1'st order equation for the ground state !



There will thus be two solution for each l 

The are generated by putting the appropriate in the formula, 

This is just a telescoped version of  the product of the dl

The lead to the spherical bessel functions 
(non-singular at r=0 )

The lead to the spherical Neumann functions
(singular at r=0)

The text has more detail for these functions to those interested....but we
focus now on the upshot of this case for the free particle. 



The Free Particle in Spherical co-
ordinates

Note that for In co-ordinates where the

Z-axis is along the momentum vector, one may expand this plane wave 
interms of spherical harmonics directly. In that case the wave function has
no         dependence. 

Then use the fact that 

Combined with no dependence means that only the m=0 
spherical harmonics  can contribute to the sum; 



Thus, 

Where the coefficients in the expansion can be found, for example, by 
integration. This form of a plane wave will be quite useful later when we 
talk about the 3-d scattering of waves off a potential. It is called the 
partial wave decomposition of the plane wave. 

Application: You have all had a direct experience of this equation without 
perhaps knowing it. When  you are stopped at a stop light and listening to 
weak FM broadcast you can often find that inching the car up a fraction of a 
wavelength or so can improve the reception. This is due to reflections of the 
FM signal (all at the same frequency, so at fixed k) at various angles into your 
receiver. If there are many scattering centers or if you average over many 
experiences of the FM signal dropping out at different stoplights you will find
that the mean distance between adjacent signal zeros are given by 2.4/k, 
where 2.4 is the first zero of the J0 bessel function, which, we see is the only term
that survives angular averaging in the expression above. 



The Spherical (3-d) QHO

Another useful example is the 3-d isotropic harmonic oscillator: Its Hamiltonian is 

Isotropy (H commutes with each Li) allows us to once again search for solutions
of the form 

It is convenient to take the dimensionless co-ordinate (as was done in the 
1-d QHO case...remember?) 

Then our ansatz for finding a solution is



With that ansatz, the radial equation can be written as a D.E. In v  as, 

We can again employ power series to search for a solution of this equation.
Again, we will learn if we do so that the power series solutions do not truncate
unless   

Where

Is actually a half-odd integer. That is,   

With 



We note that this spectrum thus has a larger degeneracy than just 2l+1

At each E. This is due to what is termed a dynamical symmetry. It is the 
same dynamical symmetry that we will confront in the Hydrogen spectrum. 
Levels of different l's will have the same energy.  

The point is, that the algebra of observables formed from p and x will in 
rare instances contain a larger set of commuting operators than just 

The Li's together form a group called so(3), the group of rotation in 3-d. It 
will turn out that for special cases of V(r) there are additional operators that 
commute with H. In both this case and in the Hydrogen atom we will see that 
they lead to a group so(4), a rank 2 group which has an additional operator 
that commutes will the three above! More on that later....
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