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Modeling o�-resonant nonlinear-optical cascading in meso scopic thin �lms and
guest-host molecular systems

Nathan J. Dawson, James H. Andrews, and Michael Crescimanno
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555�

We develop a model for o�-resonant microscopic cascading of scalar polarizabilities using a self-
consistent �eld approach, and use it to study the e�ects of bo undaries on mesoscopic systems of
nonlinear polarizable atoms and molecules. We �nd that high er-ordered susceptibilities can be
enhanced by increasing the surface-to-volume ratio through reducing the distance between bound-
aries perpendicular to the linear polarization. We also show lattice scaling e�ects on the e�ective
nonlinear refractive indices for Gaussian beams, and illustrate �nite size e�ects on dipole �eld dis-
tributions in �lms subject to long-wavelength propagating �elds. We derive simpli�ed expressions
for the microscopic cascading of the nonlinear optical response in guest-host systems.

I. INTRODUCTION

It is well-known that cascaded nonlinear optical
interactions and local �eld e�ects at the molecu-
lar level can enhance higher-order nonlinear optical
susceptibilities.[1{4] Dolgaleva,et al., showed that local-
�eld corrections predict trends in the nonlinear sus-
ceptibilities as functions of concentration in a bulk
material.[5{8] Earlier studies focused on a tensor for-
malism to describe correlated cascading e�ects in bulk
materials,[1] while others focused on cascading between
coupled molecules only.[4, 9] Mesoscale nonlinear opti-
cal e�ects, however, have not been well investigated, and
give new insights into enhancing the nonlinear suscepti-
bility that are not present in a bulk approximation.[10]
Here, we use the self-consistent �eld approach to cas-
cading (Bloembergen's method [11]) to approximate the
local �eld factors and the cascading contribution in meso-
scopic systems.

We compute the e�ective (hyper)polarizabilities and
susceptibilities with respect to the applied �eld by an it-
erative update method to approximate a �nite ensemble
of polarizable molecules. After describing the method
in Section II, we apply it in Section III to bounded and
strained tetragonal systems. The dipolar �eld at each
molecule from all other molecules is shown for di�erent
�lm thicknesses, where the dipoles are induced by a lin-
ear polarized Gaussian beam. Then, as an application
to a real system, we �nd that the relationship between
the cascading contribution of hexagonal close-packed and
honeycomb structured monolayers of the molecule C60

can be understood by the �ll factor and concentration.
Finally, in Section IV we approximate the e�ective second
hyperpolarizability of a mesoscale guest-host system in
which a nonlinear dopant has been randomly distributed
in a discretized linear matrix, providing an example of
matrix-enhanced dye polarizability.

� Corresponding author: dawsphys@hotmail.com

II. THEORY

A. Self-consistent approach

When point molecule j is polarized by an electric �eld,
it becomes a dipole, causing moleculei 6= j to experience
a corresponding dipole �eld

E i;j =
3 (r̂ i � r̂ j )

�
pj � (r̂ i � r̂ j )

�
� pj

jr i � r j j3
; (1)

wherepj is the dipole moment of moleculej , jr i � r j j is
the molecular separation, and ^r is a unit vector.

We introduce the geometric tensorg�� j i;j in a cartesian
coordinate system, relatingpj to E i;j from Eq. (1),

g�� j i;j =
�

3[(r̂ i � r̂ j ) � �̂ ][(r̂ i � r̂ j ) � �̂ ] � � ��

� vc

jr i � r j j3
;

(2)
where the Greek subscripts represent the spatial carte-
sian components and� �� is the Kronecker delta. Here,
we have introduced a characteristic volume,vc, which
makes the geometric tensor dimensionless.

When the total electric �eld at molecule i is su�ciently
small, its dipole moment can be approximated as a power
series,

p� j i = k(0)
� j i + k(1)

�� j i E � j i + k(2)
��� j i E � j i E � j i

+ k(3)
���� j i E � j i E � j i E � j i + � � � ; (3)

where k(n )
i is the nth-order polarizability of the i th

molecule.
In a system ofN molecules, the total electric �eld is the

vector sum of the applied �eld and the dipole �elds due
to all other molecules (higher-order multipole moments
are ignored and we use a dipole approximation). Thus,

E � j i = E a
� j i +

N � 1X

j 6= i

E d
� j i;j ; (4)

where E a
� j i is the � component of the applied �eld at

the i th molecule and E d
� j i;j is the � component of the
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dipole �eld at the i th molecule from the j th molecule. It
is common to write the linear and nonlinear responses in
terms of the macroscopic �eld. Due to the microscopic
focus of this paper, we have de�ned the e�ective polar-
izability and susceptibility in terms of the applied �eld,
E a , where the depolarization �eld [12] and self-�eld [13]
are included in the summation of all other dipole contri-
butions to the electric �eld.[10] Because of Eq. (2), the
dipole �eld can then be rewritten as

E d
� j i;j = g�� j i;j

p� j j

vc
: (5)

Because of the computational approach we use, it is
natural to scale all

�
�pj

�
� to jpi j de�ning,

g(N � 1)
�� j i =

N � 1X

j 6= i

g�� j i;j P� j i;j ; (6)

where

P� j i;j =
p� j j

p� j i
: (7)

The factor g(N � 1)
�� j i depends on the particular map of

the a priori molecular polarizations. A brute force ap-
proach would be to solve the set of polarization equations
for every interacting molecule in the system. A simpler
approach would be to approximate the value ofP� j i;j
with an iterative method. Choosing the latter approach,
we solve forp[1]

� j i in the equation

p[1]
� j i = k(0)

� j i + k(1)
�� j i

0

@E a
� j i +

N � 1X

j 6= i

g�
 j i;j P [0]

 j i;j

p[1]

 j i

vc

1

A

+ k(2)
��� j i

0

@E a
� j i +

N � 1X

j 6= i

g�
 j i;j P [0]

 j i;j

p[1]

 j i

vc

1

A

�

0

@E a
� j i +

N � 1X

j 6= i

g�
 j i;j P [0]

 j i;j

p[1]

 j i

vc

1

A + � � � ; (8)

where

P [0]
� j i;j =

p[0]
� j j

p[0]
� j i

(9)

and

p[0]
� j i = k(0)

� j i + k(1)
�� j i E

a
� j i + k(2)

��� j i E
a
� j i E

a
� j i + � � � : (10)

Then through an iterative method we solve forp[n ]
� j i via

the previously evaluatedP [n � 1]
� j i;j . The Appendix discusses

the iterative process for higher-order corrections when a
single iteration is not a su�cient approximation of P� j i;j .

Far from the strongly coupled regime, we approximate
the interactions using only the �rst-order iterative cor-
rection. Then, we de�ne

f (N � 1)
�� j i =

N � 1X

j 6= i

g�� j i;j P [0]
� j i;j ; (11)

where, to zeroth iterative order, p[0] is the dipole moment
of a molecule subject to only the applied �eld. Note that
in this weakly coupled regimef (N � 1)

�� j i � g(N � 1)
�� j i because

the intermolecular responses are much less than every
molecule's response to the slowly varying applied �eld,
i.e., whenk(1) =r3 � 1. In addition, Eq. (11) presupposes
E a

i 6= 0.
For dipole �eld distributions, P [0]

� j i;j can be approxi-

mated by E a
j =Ea

i when k(1) E a � k(n ) (E a)n for n > 1;

otherwise, the values ofk(n )
���� ��� must be known to �nd a

value for f (N � 1)
�� j i . We use this approximation to generate

dipole �eld maps, illustrated in Section III B. Again, for
strongly interacting systems, we stress that higher-order
corrections to the self-consistent equation described in
the Appendix may be necessary for a more accurate ap-
proximation of g(N � 1)

�� j i .
Assuming that the second-order correction to the

dipole �eld contribution is small, substituting Eq. (11)
into Eq. (8) gives

p� j i � k(0)
� j i + k(1)

�� j i

�
E a

� j i + f (N � 1)
�� j i

p� j i

vc

�

+ k(2)
��� j i

�
E a

� j i + f (N � 1)
�
 j i

p
 j i

vc

� �
E a

� j i + f (N � 1)
�� j i

p� j i

vc

�

+ � � � : (12)

Using Eq. (12), we solve for the e�ective (hyper)polar-
izabilities, using

k(n )
e� ;���� ��� j i =

1
n!

@n p� j i

@Ea� j i @Ea� j i @Ea� j i @Ea� j i � � �

�
�
�
�
�
E a =0

:

(13)

B. Application to one-dimensional polarizable
molecules

We eliminate the possibility of higher-order
terms appearing in the lower-order e�ective (hy-
per)polarizabilities by assuming molecules with negligi-
ble permanent dipoles. This approximation still permits
molecules having any higher-order response.[14] We
assume that the only relevant tensor component is in
the direction of the applied �eld. Also, we assume a
lattice model, where molecules are located only at lattice
points.[15{17] Note that a lattice model is not necessary,
but this approach allows for fast computation time when
simulating the dipolar �eld contributions in the sections
below.
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Taking the applied �eld to be unidirectional and paral-
lel to the z-axis, we reduce the tensorf (N � 1)

�� j i to a vector

f (N � 1)
�z j i . Because we are assuming a lattice model, we

take the characteristic volume vc to be the volume of a
unit cell, v = ja � (b � c)j, where a, b, and c are the lat-
tice vectors. Thus, the sum of the �eld contributions of
all other molecules becomes

N � 1X

j 6= i

E d
� j i;j = f (N � 1)

�z j i

pz j i

v
: (14)

Note that the dimensionless geometric vector is scaled
to the i th dipole that is induced by the applied �eld.
Under these approximations and simpli�cations, we can
now write the simpli�ed equation for the induced dipole
moment in the z-direction,

pz j i =
X

n =1

k(n )
zz ���

�
E a

i + f (N � 1)
zz j i

pz j i

v

� n
; (15)

where E a = E a ẑ.
Again, we emphasize that, at this point, we assume

that the dipoles are only polarized in the direction of
the applied �eld and that the contributions from all (hy-
per)polarizability tensor components other than k(n )

zzz ���

are negligible. Although this model may oversimplify
some scenarios that require the consideration of molec-
ular orientation (see Section IV), it allows for a single
self-consistent equation that evaluates the e�ective scalar
(hyper)polarizabilities with respect to the applied �eld at
each molecular site. Solving Eq. (15) self-consistently for
the dipole moment and substituting it into

k(n )
e� ;i =

1
n!

@n pi

@(E a
i )n

�
�
�
�
E a

i =0

; (16)

gives the e�ective scalar (hyper)polarizabilities used to
evaluate the susceptibilities in terms of the applied �eld.
For example, a system of linearly polarizable molecules
with no permanent dipole moment has an e�ective linear
polarizability written as

k(1)
e� ;i = L i k(1) ; (17)

where the local �eld factor, L i , at the i th molecule's lo-
cation is given by

L i =
�

1 � f (N � 1)
zz j i

k(1)

v

� � 1

: (18)

For a convergent solution everywhere,k(1) f (N � 1)
zz j i < v for

all i molecules, otherwise the local �eld factor diverges.[9,
18] The average linear susceptibility is then written as

D
� (1)

E
=

1
Nv

NX

i =1

k(1)
e� ;i : (19)

Here, � is de�ned in terms of the applied �eld. Thus, Eq.
(18) is analogous, but not equal, to the Lorentz-Lorenz
local �eld factor.

C. First-order corrections to nonlinear microscopic
cascading

Cascading lower-order nonlinearities to give higher-
order nonlinear responses has been well understood and
is inherent to the power series approximation of nonlinear
optics.[1, 8, 19, 20] The e�ective (hyper)polarizabilities
are a combination of the highest-order response and
cascaded lower-order responses. When near resonance,
one must be careful to account for the imaginary (non-
degenerate frequency mixing, absorption, etc.) and real
(linear and nonlinear indices) components of the (hy-
per)polarizabilities. All tensor components are approxi-
mately real in the far o�-resonant (below resonance) case
to which we limit ourselves.

Taking into account only the largest contributing ten-
sor component of the real molecular responses (the com-
ponents purely in the direction of the applied �eld),
and under the approximations in Section II B, the �rst
through sixth e�ective hyperpolarizabilities are formally
given as

k(2)
e� ;i = L 3

i k(2) ; (20)

k(3)
e� ;i = L 4

i k(3) + 2 L 5
i Fi

�
k(2)

� 2
; (21)

k(4)
e� ;i = L 5

i k(4) + 5 L 6
i Fi k(2) k(3) + 5 L 7

i F 2
i

�
k(2)

� 3
; (22)

k(5)
e� ;i = L 6

i k(5) + 3 L 7
i Fi

� �
k(3)

� 2
+ 2 k(2) k(4)

�

+ 21L 8
i F 2

i

�
k(2)

� 2
k(3) + 14L 9

i F 3
i

�
k(2)

� 4
; (23)

k(6)
e� ;i = L 7

i k(6) + 7 L 8
i Fi

h
k(3) k(4) + k(2) k(5)

i

+ 28L 9
i F 2

i k(2)
� �

k(3)
� 2

+ k(2) k(4)
�

+ 84L 10
i F 3

i

�
k(2)

� 3
k(3) + 42L 11

i F 4
i

�
k(2)

� 5
; (24)

k(7)
e� ;i = L 8

i k(7) + 4 L 9
i Fi

�
2k(2) k(6) + 2 k(3) k(5) +

�
k(4)

� 2
�

+ 12 L 10
i F 2

i

� �
k(3)

� 3
+ 3

�
k(2)

� 2
k(5) + 6 k(2) k(3) k(4)

�

+ 60L 11
i F 3

i

�
k(2)

� 2
�
2k(2) k(4) + 3

�
k(3)

� 2
�

+ 330L 12
i F 4

i

�
k(2)

� 4
k(3) + 132L 13

i F 5
i

�
k(2)

� 6
; (25)

where

Fi = f (N � 1)
zz j i

k(1)

v
: (26)

All lower-order terms (the permanent dipole moment is
assumed to be zero) in the nonlinear polarization se-
ries contribute to the higher-order hyperpolarizabilities
in Eqs. (20)-(25). The cascading contributions are or-
dered in terms of powers ofFi . For example, the mix-
ing of two lower-order responses results in a higher-order
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response in which the magnitude depends onFi , while
the mixing of three lower-order responses depends on the
value of F 2

i .
Note that the dipole approximation may not be su�-

cient to express the e�ective response in many molecular
systems because additional terms in the multipole expan-
sion may make signi�cant contributions to the e�ective
hyperpolarizabilities. This is apparent, particularly at
higher-orders, where, for example, the last term in Eq.
(25) is a �fth-order cascading contribution.

III. APPLICATIONS TO SINGLE-COMPONENT
SYSTEMS

A. Bound and strained systems

Among the geometric quantities a�ecting the suscepti-
bility in a lattice with a �nite number of atoms/molecules
are the shape of the surface that contains the lattice,
the shape of a primitive cell, and the beam (applied
�eld) pro�le. Previous investigations for a top hat beam
through a thin �lm [10] show enhancements due to cas-
cading when a system is sharply bounded along the beam
direction. The shape of the primitive cell is known to dra-
matically change the local �eld in strained crystal lattices
as well.[21]

There are many models that assume a potential from
permanent dipoles on an in�nite Bravais lattice for ap-
proximating macroscopic systems,[22{25] but we wish to
approach the boundary problem via �eld-matter interac-
tions, beginning with the perfect dipole approximation
at each point on a �nite lattice. This method requires
knowledge about the entire system and all boundary loca-
tions, and thus is more computationally expensive when
calculating large systems. The formalism discussed in
this section is well suited for modeling cascaded nonlin-
earities through molecular interactions near interfaces.
This method of summing dipole �elds does not diverge
anywhere on the lattice. Our method's utility is that it
approximates the nonlinear optical cascading contribu-
tions in a �nite system without any assumptions as to
the linear/nonlinear behavior of the macroscopic �eld.

In addition to adjusting boundaries of a lattice we can
also strain the lattice to change the cascaded nonlin-
ear response of the system. Taking a large system of
molecules on a tetragonal lattice with constantsf a,a,cg,
the zz-component of the geometric factor,f (N � 1)

zz j i , mono-
tonically increases asc=a decreases. Figure 1(a) shows
how the z-component scales as a function ofc=a for a
molecule located in the center of a large sphere con-
structed from tetragonal primitive cells.

As anticipated, the dimensionless geometric factor,
f (N � 1)

zz j i , rapidly decreases and becomes negative asc=ais
increased due to the in
uence of all other molecules. In
contrast, f (N � 1)

zz j i rapidly becomes large asc=afalls below
unity. Also, a de�ning feature of the calculation appears

0.6 0.8 1.0 1.2 1. .6
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-1

)
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|i
f

FIG. 1. (a) A graph of �rst-order correction to f ( N � 1)
zz j i for a

molecule at the center of a sphere plotted as a function of the
lattice vector in the direction of the applied �eld, c, divided by
a lattice vector perpendicular to the �eld, a. The inset shows
a sphere constructed from a cubic lattice where molecules near
the surface have a nonzerof ( N � 1)

�z j i due to surface roughness.
(b) The zz-component of the �rst-order approximation to the
geometric factor, f ( N � 1)

zz j i , as a function of depth through the
center of a strained 45� 45 � 45 cubic lattice, where we have
probed through a surface with zero electric 
ux and travel
normally between the interfacial boundaries.

when c = a, where all cascading �elds for this center
molecule cancel,i.e., Fi = 0. Thus, for large cascading
enhancements (largef (N � 1)

zz j i ), one would prefer aligned
disk-like molecules with the applied �eld oriented along
the short molecular axis as opposed to rod-like molecules
with the applied �eld oriented along the long molecular
axis.

By considering both the microscopic structure and
the macroscopic geometry, we can further increaseFi

for systems of molecules with constantv. Figure 1(b)
shows howf (N � 1)

zz j i varies between two transverse interfa-
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(a) (b)

(c) (d)

FIG. 2. A vector diagram of the �rst-order correction to the l inear dipole �elds for the center layer of a thin �lm subject t o a
Gaussian beam. The �lm thicknesses are (a) 1 layer, (b) 7 layers, (c) 15 layers, and (d) 55 layers of a cubic lattice system with
side lengths that extend far beyond the edge of the graphic.

cial boundaries in a strained 45� 45 � 45 cube with a
tetragonal lattice structure. Note that at the boundary
locations, even in a highly-elongated tetragonal lattice,
f (N � 1)

zz j i is much larger than the next calculated interior-
location. This result illustrates the ability of a thin �lm
to enhance the e�ects of cascading.

B. Dipolar electric �eld distributions

In this section we examine �xed lattices subject to
an optical beam pro�le that is smaller than the trans-
verse size of the system. An example would be that
of the previously studied top hat beam,[10] where the
molecules both inside and outside the beam are opti-

cally relevant. Here, we focus our attention on a long-
wavelength monochromatic beam with a Gaussian pro-
�le.

Figure 2 shows four vector diagrams that illustrate the
directional components of the �eld due to the polariza-
tion of other molecules in the system. The unit cells are
cubic and the size of the arrows are relative to each other
in all parts (a)-(d), where we have arbitrarily scaled the
maximum value of the dipole �eld. In these diagrams, we
plot only the �rst-order iterative correction due to linear
dipoles that are subject to a vertically polarized applied
�eld. The diagrams show the induced �eld at the center
layer of a thin �lm subject to a Gaussian beam, where
we have truncated the illustrations beyond the edge of
the beam waist (where the electric �eld falls below 1=e
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of the peak value). (We assume that the beam is un-
changed during transport through the �lm's thickness,
but we expect that the longitudinal propagation through
thick �lms will be a�ected by the assumed nonlinear in-
dex via the well-known self-focusing phenomenon and the
inhomogeneous cascading predicted byf (N � 1)

�z j i .)

As shown in the progression from Fig. 2(a)-(d), the
competition between the in-plane and out-of-plane polar-
izations contribute to the electric �eld in the middle layer
in nontrivial ways. For samples thicker than 55-layers,
there is little change in the �eld pro�le at the center
layer for these lattice/beam parameters. The topology
of the �eld pro�le due to the other dipoles at the center
layer, and in the scaling limit, depends on the ratio of
the beam diameter to the propagation length.

Topological considerations are useful for understanding
the successive frames as one adds layers, where we adjoin
a \neighborhood at in�nity" to make each of these a map
of a vector �eld on a spherical surface,S2. If we imagine
the vector �eld over the sphere, there are two zeros of
the vector �elds in each panel of Fig. 2. The line inte-
grals of the vector �elds around regions containing the
zeros in Figs. 2(a) and 2(b) have matched positive and
negative vorticity. On the other hand, the line integrals
of the Hodge dual vector �eld on those two diagrams are
zero.[26] The opposite is true for Figs. 2(c) and 2(d),
where the line integrals of the Hodge dual to this vector
�eld (essentially the integral over the divergence of the
original vector �eld) give positive and negative vorticity
around the zeros of the �eld at these locations. Indeed,
Figs. 2(b) and 2(d) possess the same topological features
as each other's Hodge duals just as vortices and sources
are Hodge duals. In this vein, a diagram of the center
layer for an 11-layer thick material (between Figs. 2(b)
and 2(c)) is nearly self-dual.

Ultimately, the form of Fig. 2(d) is the asymptotic
form expected from the polarization of the other layers.
Figure 2(a) is as expected from no contributing polar-
ization in the other layers. Thus, these topological con-
siderations support the logical progression found by the
simulations.

C. Real systems: monolayers of close-packed C 60

We now focus our attention on monolayers of close-
packed C60 in di�erent lattice structures illuminated by
a coherent beam. Our test molecule is chosen to be C60
fullerene, which is known for its large third-order suscep-
tibility. Because there are larger cascading enhancements
at higher concentration, we consider a hexagonal close-
packed structure for this study. Monolayers of C60 form
hexagonal lattice structures at room temperature, where
the distance of separation between the centers of mass
between nearest neighbors is approximately 10:04�A.[27]

As a comparative study, we look at the vertical and hor-
izontal orientations of the lattice as well as a honeycomb
structure. The o�-resonant beam carrying the applied
�eld is propagating in the x-direction and vertically po-
larized in the z-direction. The diameter of the Gaussian
beam is 150 nm, where the location of the electric �eld is
1=eof its peak value (intensity is 1=e2 of its peak value).
The calculated region for all contributions of molecular
interactions has a diameter of 180 nm, where the average
e�ective susceptibilities are calculated within the beam
waist after all contributions from the extended region
outside the beam waist have been taken into account.

Due to the large intrinsic values of the odd-ordered sus-
ceptibilities of C60, the polarizability and second hyper-
polarizability are estimated by the three level ansatz.[28{
30] The values for the oscillator strengths and their cor-
responding transition energies were previously reported
by Leach, et al.[31, 32] Truncating the series in the
perturbation solution for the (hyper)polarizabilities to
only three states gives k(1) = 1 :85 � 10� 23cm3 and
k(3) = 3 :41� 10� 35erg� 1cm5.[10] Also, k(0) � 0, k(2) � 0,
and k(4) � 0 due to the near spherical symmetry of
C60. Note that using the standard time-dependent per-
turbation approach,[33] truncation to a three level model
may greatly overestimate the higher-order polarizabili-
ties. We only compute the cascaded contribution to the
�fth-order susceptibility and ignore the direct k(5) contri-
bution. The peak applied electric �eld used to calculate
the values given in Table I is 106 StatV/cm, which allows
for non-negligible contributions from both the polariz-
ability and second hyperpolarizability.

We consider only the scalar (hyper)polarizabilities,
though small values ofpy j i will be present. We approxi-
mate the cascading contribution using the scalar values,
and we calculate out to a third-order iteration (as ex-
plained in the Appendix). The average e�ective �fth-
order susceptibility (susceptibility de�ned by the applied
�eld with local �eld and cascading enhancements) for the
region inside the beam waist can be approximated by

D
� (5)

E[n ]
=

k(5)

V

NX

i

�
L [n ]

i

� 6
+

D
� (5)

casc

E[n ]
(27)

where

D
� (5)

casc

E[n ]
= 3 N

�
k(3)

V

� 2 NX

i

�
L [n ]

i

� 7 �
f (N � 1)

i

� [n ]
:

(28)
Here, we denote the total volume byV = Nv and the
nth-order iterative correction by the superscript [n ] as
discussed in Section II and the Appendix. The average

�fth-order susceptibility
D

� (5)
casc

E
is calculated from an

arithmetic average of the microscopic response. Table I

lists values of
D

� (5)
casc

E
for the vertical and horizontal lat-

tice alignments of hexagonal and honeycomb monolayers

subject to a Gaussian beam. The values of
D

� (5)
casc

E[n ]
for
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TABLE I. Monolayers of C 60 subject to a vertically polarized Gaussian beam.
D

� (5)
casc

E
values are � 10� 26 cm4erg� 2 .

Lattice type Vertical hexagonal Horizontal hexagonal Vertical honeycomb Horizontal honeycomb

Diagram

D
� (5)

casc

E[3]
4.34 4.34 1.91 1.91

D
jpy j [1]

E
/

D
jpz j [1]

E
0.0058 0.0006 0.0011 0.0006

The di�erence between the response in a hexagonal and honeycomb lattice can be understood by using a 2=3 �ll
factor in Eq. (28). The lattice geometry and nearest neighbo r distance remain the same, but the concentration has
been reduced by the �ll factor, and therefore, we �nd that the computed honeycomb response is roughly 4=9 that of
the computed hexagonal lattice, con�rming the greater sign i�cance of cascading in the �lled, close-packed, structure .

a Gaussian and top hat beam are similar even though the
Gaussian beam has a smaller applied �eld at all molecules
except at the center, when the peak value is equal to
that of the top hat beam. This can be understood by
the on-average increase ofPi;j as we move further from
the center of the Gaussian beam. Note that although the
responses between the two types of beam pro�les are the
same, the magnitude of the cascading contribution for
a Gaussian beam (with the peak value equal to that of
the top hat beam's) is smaller than that resulting from
a top hat beam because the susceptibility is multiplied
by the tapered Gaussian beam's applied �eld. Rotating
the polarization of a linearly polarized beam between the
vertical and horizontal lattice alignments also shows neg-
ligible changes in the cascading contribution for both the
hexagonal and honeycomb monolayers.

For the hexagonal monolayer subject to a Gaussian
beam pro�le, the values from the �rst and second it-
eration change by < 3%. Thus, a �rst-order approxi-
mation to the iterative method is fairly accurate in this
scenario and does not carry the computational expense
of higher orders that require interactions between polar-
ization directions via tensor components. The iterative
method converges quickly, typically changing only in the
�fth digit from the second to the third iteration for these
monolayers. All iterations after the second (tested out to
20 iterations for stability purposes) showed a stable pre-
cision much greater than the uncertainties of the model
due to the model's approximations, such as point dipoles,
truncated eigenstates, and nearest-neighbor distances.

Again, note that a scalar approximation is also used
to generate the values in Table I. In the bottom row,
we compare the average dipole moment in the horizontal
direction to the dipole moment in the direction parallel to
the applied �eld. The dipole moment ratio never exceeds

0:6% during the iterations, and thus, further justi�es the
approximation of a scalar response.

IV. APPROXIMATING CASCADING IN
POLED GUEST-HOST SYSTEMS

So far we have only considered systems with a single
species of atom/molecule. The lattice model, however,
can be further generalized to include several molecules
with di�erent optical properties. A dipole moment can
then be written for individual molecules, where the de-
pendencies on all �elds are taken into account including
the �eld contributions from the other species.

To illustrate the inclusion of more than one type of
atom or molecule, we choose a dye-doped polymer sys-
tem. The two main advantages of placing active non-
linear molecules in a polymer are (1) the large linear
susceptibilities of many polymers that increase the lo-
cal �eld and (2) the ability to align the nonlinear dopant
in the medium.[34{36] We use the lattice approximation
to model the �eld enhancement via a randomized occu-
pation of the lattice sites by the guest species. A host
cluster is approximated as a point dipole at each occupied
lattice site, which we call the host cluster dipole approx-
imation for nonconjugated polymers. Although we take
the guest species to be uniaxially aligned molecules and
use a lattice approximation, these simpli�cations may be
removed for a more general result.

We assume that all dopant molecules in the sys-
tem have (hyper)polarizabilities in the ẑ-direction
that are equal to the orientational averaged (hy-
per)polarizabilities and all other components are negligi-

ble, e.g.,


k(2)

�
=

D
k(2)

zzz

E
=



cos3 �

�
k(2)

zzz and
D

k(2)
ijk

E
� 0

for all cases other than i = j = k = z. This approxi-
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mation is valid for one-dimensional molecules oriented at
small angles from the direction of the electric �eld, whereD

k(2)
zxx

E
=

D
k(2)

xzx

E
=

D
k(2)

xxz

E
=



cos� sin2 �

�
k(2)

zzz =2,

which is small due to the sin2 � contribution.[37, 38] A
full treatment of the cascading contributions to k(3) for
a pair of one-dimensional molecules in an electric �eld at
�xed locations is given in Ref. [18]. For our current ex-
ample, however, we ignore the azimuthal angle and treat
only the average polar angle in an attempt to reduce ori-
entational complexities. Therefore, for �xed molecules,
we de�ne

� (n ) =


cosn +1 (� )

�
k(n ) ; (29)

where all other tensor components are assumed negligible
for small angles.

We de�ne pA as the dipole moment of the linear host
species andpB as the dipole moment of the guest species.
The two dipole moment equations are

pA
i = � (1)

A

0

@E a
i +

N A � 1X

j 6= i

hi;j
pA

j

v
+

N BX

j

f i;j
pB

j

v

1

A ; (30)

pB
i =

X

n

� (n )
B

0

@E a
i +

N AX

j

hi;j
pA

j

v
+

N B � 1X

j 6= i

f i;j
pB

j

v

1

A

n

(31)

where hi;j and f i;j are the geometry-dependent fac-
tors (to a �rst-order approximation using the iterative
method) for speciesA and B that account for a dipole
�eld from all j molecules. We treat hi;j and f i;j as
scalars because we choose our uniaxial molecules to be
aligned with the applied �eld polarization. Note that for
higher-order iterative corrections, we would keep track

of each host molecule's
�

� (1)
A j i

� [m ]
and guest molecule's

�
� (n )

B j i

� [m ]
.

Because we are interested in the nonlinear response of
guest species, we �rst solve Eq. (30), which gives

pA
i = � (1)

A L A
i

0

@E a
i +

N BX

j

f i;j
pB

j

v

1

A ; (32)

where

L A
i =

0

@1 �
N A � 1X

j 6= i

hi;j PA
i;j

� (1)
A

v

1

A

� 1

: (33)

Here, L A
i is the �rst-order correction to the local �eld

at a host cluster due to all other host clusters, where
we have also included the scaling factorPA

i;j = pA
j =pA

i
for molecules subject to a spatially varying applied �eld
with the same approximations described in Section II.

Substituting Eq. (32) into Eq. (31) gives

pB
i =

X

n

� (n )
B

�
(1 + Qi ) E a

i +
�

Si + f (N B � 1)
i

� pB
i

v

� n

(34)

where

Qi =
� (1)

A

v

N AX

j

hi;j L A
j Ei;j ; (35)

Si =
� (1)

A

v

N AX

j

hi;j L A
j

N BX

k

f j;k PB
i;k ; (36)

and

f (N B � 1)
i =

N B � 1X

j 6= i

f i;j PB
i;j : (37)

The last term in Eq. (35) allows for a spatially varying
applied �eld, where

Ei;j =
E a

j

E a
i

: (38)

Solving Eq. (34) self-consistently and substituting into
Eq. (16) gives the (hyper)polarizabilities of guest
molecules. O�-resonance, the �rst-order contributions to
the e�ective polarizability, hyperpolarizability, and sec-
ond hyperpolarizability of the i th guest molecule are

� (1)
e� ;B;i = � (1)

B
1 + Qi

1 �
�

f (N B � 1)
i + Si

� � (1)
B

v

; (39)

� (2)
e� ;B;i = � (2)

B
(1 + Qi )

2

 

1 �
�

f (N B � 1)
i + Si

� � (1)
B

v

! 3 ; (40)

and

� (3)
e� ;B;i =

� (3)
B (1 + Qi )

3

 

1 �
�

f (N B � 1)
i + Si

� � (1)
B

v

! 4 (41)

+
2
v

�
� (2)

B

� 2 (1 + Qi )
3

�
f (N B � 1)

i + Si

�

 

1 �
�

f (N B � 1)
i + Si

� � (1)
B

v

! 5 :

Equations (39)-(41) are similar in form to Eqs. (17),
(20), and (21) except for the termsQi and Si . The �rst
additional term, Qi , comes from the self-consistent lin-
ear �eld correction to the guest molecules from the sur-
rounding host material. The second additional term, Si ,
is similar to a second-order iterative correction in the sin-
gle species model, where a nonlinear process from a guest
molecule alters the �eld that a host cluster experiences
(including the modi�ed �eld corrections from the host),
which in turn a�ects the �eld at any guest molecule.

As an example, we consider athin, poled, guest-
host �lm of disperse orange 3 (DO3) molecules dis-
solved in poly(methyl methacrylate) (PMMA). DO3 is
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an azobenzene dye with a molecular weight of approx-
imately 242 g/mol. PMMA has a density of 1:12 g/cm3,
and setting the cubic lattice constant to approximately
7:11�A(the volume of a cubic cell is 3:19 � 10� 22 cm3)
gives an e�ective molecular weight of the host cluster to
be that of DO3 (not the actual molecular weight of a
host molecule). For PMMA with a dielectric constant,
� r , of 2:85, we �nd a host cluster polarizability of ap-
proximately 3:27 � 10� 23 cm3 in Gaussian units via the
Clausius-Mossotti equation for an isotropic bulk mate-
rial,

k(1)
A =

3V
4�N

�
� r � 1
� r + 2

�
; (42)

where V is the total volume given in units of cm3, N is
the the number of host clusters, and the presence of 4� in
the denominator (lack of � 0 in the numerator) converts
the polarizability to Gaussian units. Note that k(1)

A is
assumed to be isotropic, and therefore,� (1)

A = k(1)
A . The

guest molecules are assumed to be at a concentration of
1:56%, which roughly corresponds to one guest molecule
per every 64 lattice sites. We consider a sample of thick-
ness 9:24 nm (13 lattice sites thick), subject to a Gaussian
beam with a diameter of approximately 150 nm (roughly
211 lattice sites).

The guest molecules are assumed mostly aligned, with
an average polar angle,h� i = 15 � , from the ẑ-direction
(direction of the polarized light). The real o�-resonant
value for the polarizability was evaluated using the
ORCA program system [39] and was 7:99 � 10� 23 cm3.
To optimize the molecular structure prior to approxi-
mating the polarizability, geometry relaxation steps were
taken after every energy calculation using the BP func-
tional in conjunction with the TZV basis set.[40{42]
The hyperpolarizability and second hyperpolarizability
of DO3 have been tabulated as 2:77� 10� 29 erg� 1=2cm4

and 2:56� 10� 34 erg� 1cm5, respectively.[43, 44] The cor-
responding orientational averaged values at 15� are then
� (1)

B = 7 :45� 10� 23 cm3, � (2)
B = 2 :50� 10� 29 erg� 1=2cm4,

and � (3)
B = 2 :23� 10� 34 erg� 1cm5.

The average of the �rst-order iterative cascaded con-
tribution to the orientationally averaged, scalar, sec-

ond hyperpolarizability,
D

� (3)
e�

E
, was calculated to be

2:77� 10� 33 erg� 1cm5, where the �rst term in Eq. (41) is
2:61� 10� 33 erg� 1cm5 and the second term in Eq. (41) is
1:61 � 10� 34 erg� 1cm5. The average third-order suscep-
tibility as a function of the applied �eld (assuming the
o�-resonant nonlinear contribution to the susceptibility

of PMMA is negligible),
D

� (3)
e�

E
, is 1:20� 10� 13 erg� 1cm2.

For comparative purposes, if we were to remove the
PMMA and observe the DO3 in a gas phase while keeping
the long molecular axis aligned with the �eld making an
average polar angle of 15� , we calculate the orientation-

ally averaged third-order susceptibility
D

� (3)
e�

E

gas� orient
�

NB � (3) =V to be 9:69� 10� 15 erg� 1cm2. Thus, the pres-

ence of the linear host greatly enhances the nonlinear
susceptibility of the system due to both local �eld and
cascading e�ects.

When modeling guest-host systems, theQi 's depend
on the details of the microscopic con�guration. Note that
these Qi 's, which refer to the host's linear modi�cation
to the applied �eld, can be both positive and negative.
Thus, our approach allows one to calculate the cascaded
contribution ab initio for a nano-engineered system with
a speci�c geometry.

V. CONCLUSIONS

We used a self-consistent method to derive the scalar
e�ective nonlinear susceptibilities of bounded systems
out to seventh-order. The lattice model allows for
fast calculations of geometric factors that epitomize the
electronic interactions between polarizable atoms and
molecules. By substituting these geometric factors into
the calculation for the response of a system of dipoles, we
have shown that boundary e�ects and deviations from a
cubic lattice may enhance the local �eld and cascading
contributions to the o�-resonant optical responses. The
resultant �eld due to dipoles induced by a Gaussian beam
has been characterized for di�erent �lm thicknesses. We
also applied our cascading approach to calculate the non-
linear cascaded contribution to the �fth-order suscepti-
bility in monolayers of C60.

We further developed this approach in application to
a guest-host model, where a linear-optical host is doped
with nonlinear-optical molecules. By limiting the study
to �xed molecules, we derive expressions for the e�ective,
nonlinear responses of the guest molecules that include
all linear- and nonlinear-optical cascading con�gurations.
We used a DO3-doped PMMA system (1.56% DO3) as
an example in which we show more than an order-of-
magnitude increase in the third-order susceptibility with
respect to an oriented gas state (no host present).

This work may lead to new approaches for calculating
additional self-focusing phenomena in beam stability sim-
ulations, which may impact optical limiter designs and
other nonlinear devices.
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APPENDIX A: HIGHER-ORDER CORRECTIONS
AND THE ITERATIVE PROCESS

For many systems, Eq. (11) may not give
a close enough approximation to the e�ective (hy-
per)polarizabilities. In these cases, further iterations to
the self-consistent dipole equation are necessary to give
a more accurate description of the o�-resonant cascading
contribution. For the �rst order correction, we obtained
solutions in terms of f (N � 1)

�� j i . The iterative method is
described following Eq. (8), and for the second-order
correction, gives

p[2]
� j i = k(0)

� j i + k(1)
�� j i

0

@E a
� j i +

N � 1X

j 6= i

g�
 j i;j P [1]

 j i;j

p[2]

 j i

vc

1

A

+ k(2)
��� j i

0

@E a
� j i +

N � 1X

j 6= i

g�
 j i;j P [1]

 j i;j

p[2]

 j i

vc

1

A

�

0

@E a
� j i +

N � 1X

j 6= i

g�
 j i;j P [1]

 j i;j

p[2]

 j i

vc

1

A + � � � ; (A1)

The e�ective (hyper)polarizabilities given in Eqs. (17)
and (20)-(25) are �rst-order corrections to the response
of molecules that are polarized along the direction of
the applied �eld. With a more rigorous approach, one
can �nd the e�ective (hyper)polarizabilities for all possi-
ble components. Thus, we can de�neP [1]

� j i;j in terms of
these �rst-order e�ective (hyper)polarizabilities and the
applied electric �eld,

P [1]
� j i;j =

X

n

�
k(n )

���� ��� j j

� [1]
E a

� j j E a
� j j E a

� j j � � �

X

n

�
k(n )

���� ��� j i

� [1]
E a

� j i E
a
� j i E

a
� j i � � �

; (A2)

where we have altered the notation of the e�ective (hy-

per)polarizabilities to account for higher-order correc-
tions, i.e., ke� in Section II is the �rst-order correction
in the iterative method k[1] .

For a known spatial distribution of the applied electric
�eld, Eq. (A2) has some speci�ed value for each compo-
nent of a moleculei with respect to some other molecule
j , which is similar to that used for the updates in Ref.
[45]. Once the single molecule (hyper)polarizabilities
have been inserted into the �rst-order correction to
the e�ective (hyper)polarizabilities, the �rst-order cor-
rected e�ective (hyper)polarizabilities are inserted into
Eq. (A2). Then, we de�ne

�
f (N � 1)

�� j i

� [1]
=

N � 1X

j 6= i

g�� j i;j P [1]
� j i;j ; (A3)

where
�

f (N � 1)
�� j i

� [0]
is given in Eq. (11).

To �nd the second correction to the o�-resonant (hy-
per)polarizabilities for the i th molecule, we substitute
Eq. (11) into Eq. (A1), and then substitute the resul-
tant equation into

�
k(n )

���� ��� j i

� [2]
=

1
n!

@n p[2]
� j i

@Ea� j i @Ea� j i @Ea� j i @Ea� j i � � �

�
�
�
�
�
�
E a =0

:

(A4)
These values are the second-order corrections to the (hy-
per)polarizabilities. This simple step-by-step iterative
process may be used to evaluate these higher-order cor-
rections, where a loop may be implemented until the
e�ective hyperpolarizabilities converge. Third order-
corrections are found via the next iteration, where we
replace the superscripts[2] by the superscripts [3] and
use values obtained in from the second-order corrections
by replacing the superscripts [1] by the superscripts [2] .
Following this same principle, higher-order iterative ap-
proximations can be obtained.
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