
ar
X

iv
:2

40
8.

09
25

7v
1 

 [
m

at
h-

ph
] 

 1
7 

A
ug

 2
02

4

A Kac-Weyl Character Identity

Michael A. BAKER a, Dipesh BHANDARI band Michael CRESCIMANNO c

aq Department of Mathematics, 719 Patterson Office Tower Lexington, Kentucky 40506-0027,
USA

E-mail: mabaker@uky.edu

bq Department of Physics, Southern Methodist University, Dallas, Texas 75275-0175, USA
E-mail: dbhandari@mail.smu.edu

cq Department of Physics and Astronomy, Youngstown State University, Youngstown, OH,
44555, USA

E-mail: dcphtn@gmail.com

Abstract. An explicit quantization of Chern-Simons theory leads to an identity between
sums of the Kac-Weyl characters. One can use this identity to prove inequalities that con-
strain the fusion coefficients N l

µν in the case of RCFTs that descend from current algebras.
It also leads to a statement regarding the conjugacy symmetry of the sums of squares of
fusion coefficients for current algebras admitting complex representations.
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1 Notation

Given a highest weight vector µ, the character χµ is the unsigned exponential sum over the
collection of weights (vectors) Ωµ making up the representation µ.

χµpâtq “
ÿ

rPΩµ

epr,âtq “ Trµpeâtq (1.1)

where the p, q is the Cartesian inner product on the weight space and the trace “Tr” above is
with the exponential computed in the representation µ. Here ât is an arbitrary vector in the
weight lattice. Throughout, our sums over the weights in Ωµ include the weight’s multiplicity.

Note that each element w of the Weyl group W permutes the weights in the representation,
indicating that the above character sums are unchanged under Weyl action on ât. The Weyl
action presages that each character can be realized as a ratio of alternating sums over the Weyl
group action on just the highest weight alone (a single orbit of length |W |), as

χµpâtq “ Dµ`ρpâtq
Dρpâtq

where Dµpâtq “
ÿ

wPW

p´1qwepwpµq,âtq (1.2)

where p´1qw is ˘1, the parity of the w (as an element in the permutation of the simple roots)
and the distinguished vector ρ “ 1

2

ř

αą0
α is also a member of the weight lattice. The Dµpâtq

have odd parity under the transpositions that generate the Weyl action on ât. Importantly
for what follows, this explicit form for the character allows one to unambiguously define a
notion of ‘character’ for any element of the weight lattice (not just highest weights). It is this
generalization we refer to below simply as the character, though in some of the literature they
are referred to as ‘virtual’ characters.

2 Statement of the Theorem

We prove the following:
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Theorem 2.1. For any highest weights µ and ν we have
ÿ

µ1PΩµ

χµ1`νpk, τ, uq “
ÿ

ι

N ι
µνχιpk, τ, uq (2.1)

in which ι is a highest weight, χιpk, τq are the Kac-Weyl characters (for representation ι at level
k and with modular parameter τ) and where N ι

µν are the level-k fusion coefficients. Here u is a
vector proportional to ât.

Lemma 2.2. Taking ν “ 0 (identity representation) leads to the character identity first
presented in Ref. [11],

ÿ

µ1PΩµ

χµ1pk, τ, uq “ χµpk, τ, uq (2.2)

The outline for the proof of the theorem is to first display a constructive proof of the following.
Lemma 2.3. On the variety that supports the chiral ring, the algebra level k version of

Theorem 2.1 holds:
ÿ

µ1PΩµ

χµ1`νpk, γq “
ÿ

ι

N ι
µνχιpk, γq, (2.3)

where γ is an element of the variety (note there is no explicit τ dependence). Once the above
lemma is established we show how the theorem follows by the uniqueness of integration in τ .

3 Remarks

We provide now a few brief, simple examples and applications to give the reader a more intuitive
feel for the theorem and why it is non-trivial (i.e. beyond the abelian case). For simplicity,
first take the case k Ñ 8 and specialize to the algebra-level limit (τ Ñ 0,8). For sup2q
note for the first few representations we have from Eq. 1.2 that χ0 “ 1, χ1 “ 2 cospuq and
χ2 “ cosp2uq `2 cos2puq, χ3 “ 4 cospuq cosp2uq, etc. Here, the dimension of the representation µ
is µ`1. By that same definition Eq. 1.2, we have for other, non-highest weights also a rendering
of χ for example, χ´1 “ 0, χ´2 “ ´1, χ´3 “ ´2 cospuq, that is, for m ą 0, χ´m “ ´χm´2.

With this abbreviated table, note that, for example,
ř

µ1PΩ1
χµ1`1 “ χ0 ` χ2 since Ω1 “

t´1, 1u, and this aligns with fusion on the RHS of Theorem 2.1 in that 1 b 1 “ 0 ‘ 2. Another
example: note that

ř

µ1PΩ2
χµ1`1 “ ř

µ1PΩ1
χµ1`2 “ χ1 ` χ3 follows from Ω2 “ t´2, 0, 2u and

the fact that χ´1 “ 0. Note that
ř

µ1PΩ3
χµ1`0 is a single highest weight term as a result of

cancellations due to χ´m “ ´χm´2.
Next we use the fact that there is a positive definite Hermitian norm in the space of characters

that makes them an orthonormal basis. Since the multiplicities mµ1 on µ can be defined as
ř

µ1PΩµ
mµ1 “ dimpµq and

ř

µ1PΩσ
mµ1 “ dimpσq, where mµ1 P Z

`, taking the norm-square of
both sides of Eq. 2.1, gives

ÿ

l

´

N l
σµ

¯2

ď min

¨

˝

ÿ

µ1PΩµ

m2
µ1 ,

ÿ

µ1PΩσ

m2
µ1

˛

‚ (3.1)

true @k level.
One may see that Eq. 2.1 is like a generalized Fourier decomposition and that Eq. 3.1 is the

associated Parseval’s identity. Note for example for SUp3q, ř

l

`

N l
3σ

˘2 ď 3,
ř

l

`

N l
8σ

˘2 ď 10 and
ř

l

`

N l
6σ

˘2 ď 6.
Denote the list of representations that make up the fusion ring by Ωall and form the distin-

guished vector v “ ř

µPΩall
χµ. Now in the space of characters calculate the inner product of v
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with both sides of Eq. 2.1. This leads to minpdimpνq,dimpµqq ě ř

lN
l
µν . This inequality allows

us to have a constraint that is based on current algebras as the dimpνq, etc. is from Eq. 2.1 the
Lie algebra (k Ñ 8) dimension and not the quantum dimension of the representation. As such,
we do not have a useful generalization of Eq. 2.1 to RCFTs that may not descend from current
algebras (cf. Ref. [6] and Ref. [10]).

Next, let k be finite but keep τ Ñ 0,8. For sup2qk the characters are χn “ sinpπpn `
1qu{pk ` 2qq{ sinpπu{pk ` 2qq. Now the theorem’s RHS is evaluated on the sup2qk variety and
the level-k fusion N l

µν emerges. For one simple example, let k “ 2 and consider
ř

µ1PΩ2
χµ1`2 “

χ0 ` χ2 ` χ4 “ χ0 where the last inequality follows at k “ 2 from the fact that the variety is
the collection of the 8th roots of unity on which χ4 “ ´χ2.

Another straightforward application of the theorem is in the conjugacy symmetry of the
sums of fusion coefficients. Limit now our discussion to current algebras admitting complex
representations (For Lie algebras, An, Dn and E6). In Ref. [2], the authors show that

ř

lN
l
ab “

ř

lN
l
ab̄

for any a, b (b̄ denotes the conjugate representation to b). Since these sums are just the
result of the product of a and b written in terms of characters paired with v “ ř

µPΩall
χµ through

the inner product, the equality
ř

lN
l
ab “ ř

lN
l
ab̄

combined with Eq. 2.1 automatically indicates
that, whether with b or b̄, the LHS has the same number of non-zero terms. Thus, appealing
to the associated Parseval’s identity we recover in this case the result

ř

lpN l
abq2 “ ř

lpN l
ab̄

q2
without directly appealing to crossing symmetry as in Ref. [2].

Since all the denominators in Eq. 2.1 are the same, focusing just on the numerators, we see
that the alternating sum over the Weyl group then can be interchanged with the sum over the
weight vectors in the representation. Although Ωµ is Weyl invariant, the alternating sum for
Dµpâtq is over the weights displaced by ρ. Thus, in the resulting sum, only displaced weights
that are part of an orbit of length |W | will lead to a non-zero contribution. The difficulty is that
in general there will be many of these which apparently according to Eq. 2.1 actually cancel.

Rather than tracing through the intricacy of these many cancellations, below we show that
in the group theory context, Eq. 2.1 can be understood via the quantization of Chern-Simons
(CS) theory as a diagonalization of the fusion ring of Gk. We show that relating these to the
(genus 1) modular primaries of the associated WZW model then leads to a proof of the proposed
identity for the Kac-Weyl characters.

4 Brief Review of Chern-Simons Quantization on T
2

ˆ R

For context, note that the lemma arose as a generalization of understanding the detailed di-
rect quantization of CS theory [12]. We adopt an earlier explicit quantization formulation of
CS theory [5] on the T 2 ˆ R that was useful for making connections between varieties, chiral
potentials and fusion in Gk and coset models [4], and to a universal formula for the inverse of
the handle operator in Gk [3], the quadratic form in which the representations are orthonormal
that was alluded to before. One way to view this CS quantization approach is as a explicit
implementation of the Racah–Speiser algorithm using operators on a finite Hilbert space.

Briefly, for compact gauge groups, a gauge transformation of the CS action can lead to terms
proportional to the gauge group volume. As a quantum theory the integrand of the path integral
should not change under this transformation, leading to the conclusion that the overall coefficient
of the action must be k{2π with k P Z called the level (~ “ 1). In the canonical quantization
framework, the Hamiltonian reduction of the CS theory on T 2 ˆ R proceeds via requiring the
gauge fields to satisfy the first class constraint F “ 0, that is, the gauge fields are flat. On the
torus this indicates that classically the remaining gauge covariant degrees of freedom may be
taken to be in the Cartan subalgebra and spatially constant. To quantize the theory it is then
necessary to choose a polarization; a simple choice for the 2-torus being along its the principal
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axes. Let Aµ (µ “ 1, 2q be the Cartan subalgebra valued gauge field on the 2-torus. The CS
action being first order in derivatives then implies for its quantum mechanical description that

rAm
1 pxq, Aj

2
pxqs “ 2πi

k
pC´1qmjδ

p2qpx´ yq (4.1)

where m, j P 1, 2, . . . , rankpGq and C is the Cartan matrix of G. The quantization of the theory
then consists of constructing a Hilbert space that supports a faithful linear representation of
these gauge covariant operators. We call this Hilbert space the Gaussian model, since it, very
roughly, can be thought of as that of a tensor products of free fields with constraints. Then
gauge invariant operators can be amalgamated from the gauge covariant operators.

An expectation of CS topological field theory is that there exists a unique “vacuum” state ψ0

and a (1 ´ 1) operator-state correspondence, that is, ψj “ Ojψ0 for tψju that span the Hilbert
space. In CS quantization as described above (in terms of non-gauge invariant operators) the
Hilbert space of the CS theory will be an invariant subspace of the Gaussian Hilbert subspace
described above.

Quite generally, gauge invariant operators are identified as Wilson loop operators in the CS

theory, explicitly Oj “ Trj

´

ei
ş

c
A

¯

where j labels the representation of the Lie algebra in which

the trace is taken and ‘c’ labels a closed path. In the associated Gaussian model we instead work

directly with the non-gauge invariant components of the Wilson loop operators, aj “ ei
ş

A
j
1
dx

and bm “ ei
ş

Am
2
dy, x and y being a Cartesian co-ordinate along the principal directions of the

spatial torus (and each integral being along that entire homotopy loop).
As linear operators on the Gaussian Hilbert space, the aj can be multiplied by each other,

forming a closed commutative ring called the Gaussian fusion ring; the same is true of the
bj products themselves. The product of the aj and bm operators however must support a
representation of the commutator Eq. 4.1

ambja
´1
m b´1

j “ e
2πipC´1qmj

pk`cq (4.2)

where, for reasons that will become clear later, we have shifted the level k by the Casimir element
of the adjoint representation. Since Eq. 4.2 implies that all the operators are idempotent, a finite
minimal Gaussian Hilbert space t|γyu to support a faithful linear representations of these unitary
operators can be built up by taking aj as diagonal and bm as ‘shift’ operators. The Gaussian
vacuum state |0y is defined via aj|0y “ |0y for all aj and x0|0y “ 1. The action of the operators

aj and bm in the Gaussian model is bj|vy “ |v ` êjy and aj |vy “ exp
´

2πipC´1~vqj
k`c

¯

|vy We denote

the Hilbert space of the Gaussian model by Λk`c or for brevity suppress the subscript and just
denote it Λ with the understanding that it depends on the level.

The Wilson loop operators (gauge invariant) are then particular polynomials in the aj or

bm. The states in associated rational conformal theory ψr “ 1?
|W |

ř

wPW p´1qwΠjb
wpr`ρqj
j |0y “

Orpbq|ψ0y with |ψ0y the unique vacuum state ψ0 “ 1?
|W |

ř

wPW p´1qwΠjb
wpρqj
j |0y in the CS/conformal

correspondence and displaying the expected state-operator correspondence in the RCFT. These
formulae indicate the RCFT Hilbert space is identified as the fully Weyl-odd subspace of the
Gaussian model whereas the Wilson loop operators Or are Weyl even. Explicitly Oµpbq “
ř

vPΩµ
Πjb

vj
j . One may think of Weyl transformation as ‘large’ gauge transformations; here the

operators are then gauge invariant whereas the states are gauge covariant and parity-odd under
Weyl’s primitive permutations, a choice that still always leads to gauge invariant expectation
values.

Fusion in G (k Ñ 8) is via the commutative ring OrOs “ N t
rsp8qOt. On the variety Eq. 4.2

however, by virtue of the associated idempotency of the bj , aj , this commutative ring truncates
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to that of Gk, namely OrpbqOspbq “ N t
rsOtpbq where N t

rs are the level k fusion coefficients
(note the same as N t

rsp8q). The aj and bk were themselves related to the gauge degrees of
freedom by a choice of polarization, a different (physically equivalent) choice—for example due
to a modular transformation—will be related to this choice by a unitary transformation of the
Gaussian Hilbert space which will then faithfully restrict to a unitary transformation on the
RCFT Hilbert space. For example for the S transformation, (aj Ñ bj and bj Ñ a´1

j ); since
the aj all commute with one another, they are the diagonal representation of the bj ’s, that is,
S´1bjS “ aj .

The Hilbert space of the RCFT has a natural norm it inherits from the underlying ‘Gaussian
model,’ that is, x0|0y “ 1 and the operator algebra on the unitary operators bi , aj implies that
xψr|ψsy “ δrs.

5 Proof of Lemma 2.3

A constructive proof of the lemma 2.3 then proceeds via realizing the characters as a mixed inner
product; that is, between a state in the Gaussian Hilbert space and one in its RCFT Hilbert
(sub-)space. Choose |γy P Λ as any state the Gaussian model. Form

xγ|S´1|ψµy “ xγ|S´1
Oµpbq|ψ0y “ xγ|OµpaqS´1|ψ0y (5.1)

where note that Oµpbq acts on the weight space through a sum of translations (by the weights

in Ωµ). Given ψ0 “ 1?
|W |

ř

wPW p´1qwΠjb
wpρqj
j |0y, then S´1|ψ0y “ 1?

|W |

ř

wPW p´1qwΠja
wpρqj
j S´1|0y

and, on general grounds as described earlier, in the Gaussian model note S´1|0y “ 1?
|Λk`c|

ř

~lPΛ |~ly,
a finite sum over the entire level-k sublattice in the weight space defining the Gaussian model.
We arrive at a rendering of the character as an inner product in the Hilbert space,

xγ|S´1|ψµy “ 1
a

|Λk`c|
1

a

|W |
ÿ

wPW

p´1qw
ÿ

~l

xγ|Πja
wpρ`µqj
j |ly (5.2)

“ 1
a

|Λk`c|
1

a

|W |
ÿ

wPW

p´1qw exp

ˆ

2πip~γC´1p~µ` ~ρqq
k ` c

˙

(5.3)

“ 1
a

|Λk`c|
1

a

|W |
Dµ`ρpγq (5.4)

Next, using this for OνpbqOµpbq “ ř

ιN
ι
νµOιpbq we have

xγ|S´1
Oµpbq|ψνy “ 1

a

|Λk`c|
1

a

|W |
ÿ

ι

N ι
νµDι`ρpγq (5.5)

Likewise using representation fusion to write

xγ|S´1
Oµpbq|ψνy “

ÿ

µ1PΩµ

xγ|Πja
µ1
jS´1|ψνy (5.6)

“ 1
a

|W |
ÿ

µ1PΩµ

ÿ

wPW

p´1qwxγ|Πja
µ1
j`wpν`ρqjS´1|0y (5.7)

“ 1
a

|Λk`c|
1

a

|W |
ÿ

µ1PΩµ

ÿ

wPW

p´1qw exp

ˆ

2πi~γC´1p~µ1 ` ~ν ` ~ρq
k ` c

˙

(5.8)

where for the last equality we used the fact that the Ωµ is even under W and necessarily
consists of disjoint W–orbits (perhaps of different lengths but) in which each element has the
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same multiplicity. Clearly combining Eq. 5.5 and Eq. 5.8 leads to the theorem (sans common
denominator) for the Gk in that,

ÿ

µ1PΩµ

Dµ1`ν`ρpγq “
ÿ

ι

N ι
νµDι`ρpγq (5.9)

Recall γ was an arbitrary state in the Gaussian model, so Eq. 5.9 is the lemma 2.3 evaluated on
the variety associated with the intersection of polynomials Eq. 4.2.

6 Proof of the Theorem: The Kac-Weyl Characters

The lemma 2.3 can be extended to an identity on the associated Kac-Weyl characters. We follow
the methods and notation of [8]. The starting point is to look at a multiplet of doubly periodic
functions on the torus with modular parameter τ , so that x Ñ x ` 1 and x Ñ x ` τ delineate
the spatial symmetries we mod the plane out to arrive at the torus. Clearly, to be everywhere
finite and avoid strict periodicity on the torus (which would leave only the constant section), we
generalize to projective periodicity. A useful starting point in that regard is to limit ourselves
to projective representations of the forgoing spatial symmetry.

To relate this covariance to the functions of the topological field theory, we can realize it as
a linear redefinition of the gauge fields. Thus, in the topological field theory, the wavefunctions
are valued in a space that has the rank of the gauge algebra. Let u be an arbitrary vector in
that space and let α, β represent root vectors there. A projective representation that leads to a
modular representation can, without loss of generality, be written in terms of functions fpτ, uq
satisfying

fkpτ, u ` βq “ fkpτ, uq fkpτ, u ` τβq “ e´iπkτpβ,βq´2πipβ,uqfkpτ, uq (6.1)

where k is a natural number. Let γ represent a weight vector. For the ADE Lie algebras, it is
straightforward to show that the ‘Gaussian’ sum,

Θγ,kpτ, uq “
ÿ

αPΛR

eiπkτpα` γ
k

q2`2πikpα` γ
k
,uq (6.2)

satisfies Eq. 6.1, with u replacing γ by linear superposition of fourier components. Here ΛR is
the integer lattice generated by the positive roots, and by pα` γ

k
q2 we mean the length squared

of the vector. For this Θγ,kpτ, uq, the first equation of Eq. 6.1 follows from the (usual) root

normalization pαi, αjq “ pαi,αiq
2

Cij and the second follows from the fact that ΛR is preserved by
shifts by any root.

So defined, these Θγ,kpτ, uq satisfy

Θγ,kpτ ` 1, uq “ eiπpγ,γq{kΘγ,kpτ, uq Θγ,kp´1{τ, uq “ e´iπkpu` γ
k

q2

ξdetp´kC{τq 1

2

Θ̃γ,kpτ, τuq (6.3)

where the former uses the integrality of pα, γq and the later is a lattice generalization of the
Poisson resummation formula so that Θ̃pτ, τuq is defined as in Eq. 6.2 but where the sum there
is over the scaled weight lattice Λw{k, ξ is the primitive eighth root of unity ([9], Eq. 5.6 pg.
195) and C the Cartan matrix.

With Θγ,kpτ, uq so defined, it is now straightforward to construct—in terms of them—the
Kac-Weyl characters. We do that in terms of symmetric and antisymmetric sums over the Weyl
group’s action. Define

Θ`
γ,kpτ, uq “

ÿ

wPW

Θwpγq,kpτ, uq Θ´
γ,kpτ, uq “

ÿ

wPW

p´1qwΘwpγq,kpτ, uq (6.4)
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The Kac-Weyl characters χ are then

χγ,kpτ, uq “ Θ´
γ`ρ,k`cpτ, uq{Θ´

ρ,k`cpτ, uq (6.5)

And we can now readily relate these characters to D of the Lie algebra approach in the earlier
section. First note that the Θ satisfy the parabolic second order differential equation,

ˆ

∇
2
u ´ 4πik

B
Bτ

˙

Θγ,kpτ, uq “ 0 (6.6)

which by linearity is true for Θ´
γ,kpτ, uq as well and as written develops no singularities when

evolving from initial data at, say, τ “ 0. Now forming up the identity Eq. 2.1, multiplying both
sides by the common denominator Θ´

ρ,k`cpτ, uq we can then use the linearity and uniqueness of
the solution of the Eq. 6.6 to compare the two sides of the identity. They will be the same if
their boundary (initial data) agree. We then note that in the τ Ñ 0 limit that Θ´

µ`ρ,k`cpτ, uq Ñ
Dµ`ρpuq where u here is the analytic extension of the evaluation of the Dµpγq from the values
γ in the variety defined via Eq. 4.2.

Now, to further one’s intuition, we perform an explicit check of identity 2.1 for Θ´
γ,kpτ, uq

in the case of sup2q2 to further elucidate the argument we made about the Kac-Weyl extension
and we do so without resorting to arguments about uniqueness and boundary conditions. The
generalised characters for the sup2qk have numerators that are:

χj „ Θ´
j`1,k`2

pτ, uq “
ÿ

αPZ

e
2iπτpα` j`1

k`2
q2`4πipα` j`1

k`2
qu ´ e

2iπτpα´ j`1

k`2
q2`4πipα´ j`1

k`2
qu, (6.7)

where j “ 0, . . . , k labels representations of the k`1 conformal blocks. By a shift in α note also
that for representation labels j and m if j ` m ą k ` 1 the χj`m “ ´χ2pk`1q´j´m (implying
that χk`1 “ 0).

Without loss of generality take j ą m. If j`m ă k`1, we expect from the LHS of theorem’s
statement that j b m “ j ´ m ‘ j ´ m ` 1 ‘ . . . ‘ j ` m, if however j ` m ą k ` 1 then
jbm “ j´m‘ j´m`1‘ . . .‘2k´ j´m. These are the expected sup2qk fusion ring relations.

7 Conclusion

Take a representation σ. A generalization of the character formula to non-highest weight vectors
allows us to write the sum over the weight vectors in a representation µ of the generalized
characters at σ displaced by those weight vectors as equal to a sum over highest weight characters
in the tensor product, complete with multiplicities. This can be understood via the rather
explicit canonical quantization of the associate Chern-Simons (CS) theory defined on T 2 ˆ R.

These considerations lead to a version of the identity for Kac-Weyl characters, as well as a
bound on the sums of squares of the fusion coefficients in terms of the dimensions of the partici-
pating representations. One avenue for future exploration is whether there exists a canonical way
to generalize the characters of fusion algebras that are not related to current algebras/CS theory
so that the analogous Eq. 2.1 still holds. It would be likewise worth investigating other bounds
on the fusion coefficients and reaching a deeper understanding of their utility and generality as
that may lead to insight in the counting/classification of RCFTs [1].
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